Speech for Social Good Workshop

Highly Intelligible Speech Synthesis for Spinal Muscular Atrophy Patients Based on Model Adaptation

Takuma Yoshimoto¹, Ryoichi Takashima¹, Chiho Sasaki², Tetsuya Takiguchi¹

¹ Kobe University

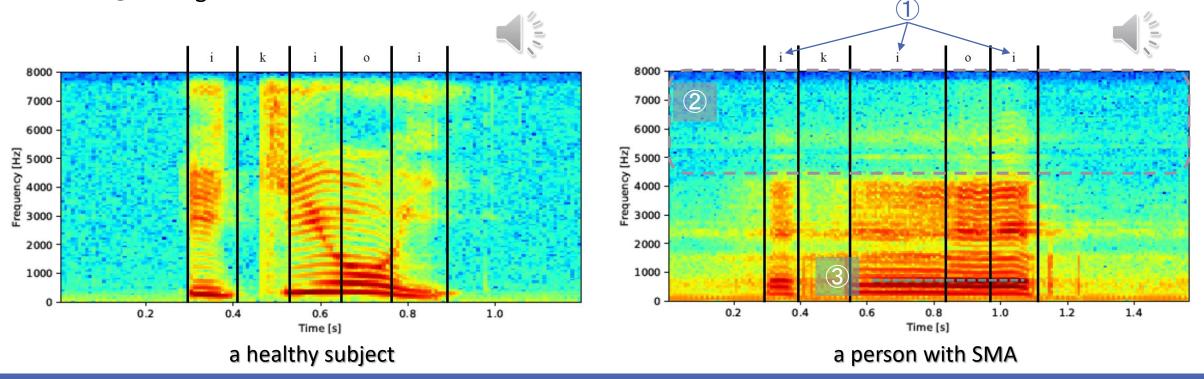
² Kumamoto Health Science University

What is Spinal Muscular Atrophy?

Spinal Muscular Atrophy (SMA)

— a type of lower motor neuron disease caused by lesions of motor nerve cells in the spinal cord

SMA type (alternate name)	Age of Onset
Type I (Werdnig-Hoffmann disease)	Before 6 months
Type II (Dubowitz disease)	6 – 18 months
Type Ⅲ (Kugelberg-Welander disease) After 18 months (childhood)	
Type IV	adulthood


Particularly, SMA type I can cause dysarthria, dysphagia, and breathing problems

In this study, we target the speech of SMA type I

Differences in voices (1/3)

- □Spectrograms for "i k i o i (勢い)" in a healthy subject (left) and a person with SMA (right)
 - 1 The duration of each phoneme is not constant
 - 2 The power of the high-frequency component is weak

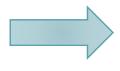
3 Changes in the vowel are not clear

Differences in voices (2/3)

☐ Automatic Speech Recognition (ASR) results

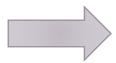
We examined isolated word recognition by GMM-HMM model.

Models were trained for each phoneme, and when recognizing a word,
the system selected the most appropriate word from a prepared dictionary.


(vocabulary size = 216 words)

	Healthy subject	SMA patient
Accuracy	100%	15.41%

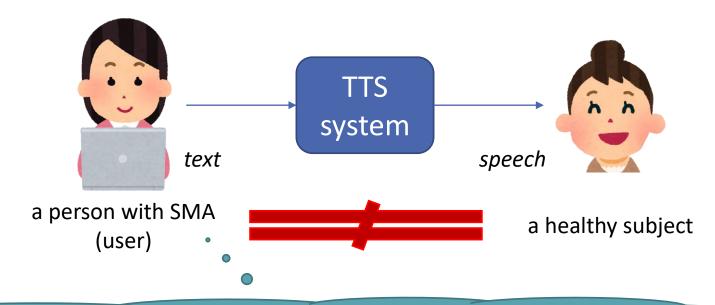
The voice of a healthy person could be recognized perfectly, but the voice of SMA could not be recognized very correctly


Differences in voices (3/3)

- ☐ From the comparison of spectrograms, the speech of a person with SMA has the following characteristics:
 - 1 The duration of each phoneme is not constant
 - 2 The power of the high-frequency component is weak
 - 3 Changes in the vowel not being clear
- □ Automatic Speech Recognition (ASR) results indicate that ASR model cannot recognize the speech of an SMA patient very well unlike that of a healthy subject.

It is difficult to understand the speech of a person with SMA

barrier to communication



text-to-speech (TTS) system to aid in communication

Challenges of TTS in communication support

current TTS applications to aid in communication

- > train model with a healthy subject, not with the data of the user
- > synthesized speech is completely different from the user's own

"I want to generate speech with my OWN voice!"

Creating TTS for a person with SMA (1/2)

A possible way:

"record the voice of the SMA patient and train a TTS model with only that data"

Problem 1

Large volume of recordings is too much of a burden on the SMA person

Purpose 1

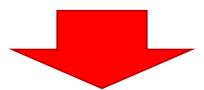
train a TTS model with a small amount of SMA patient speech data

Problem 2

The speech would be synthesized indistinctly, just like the SMA person's original voice

Purpose 2

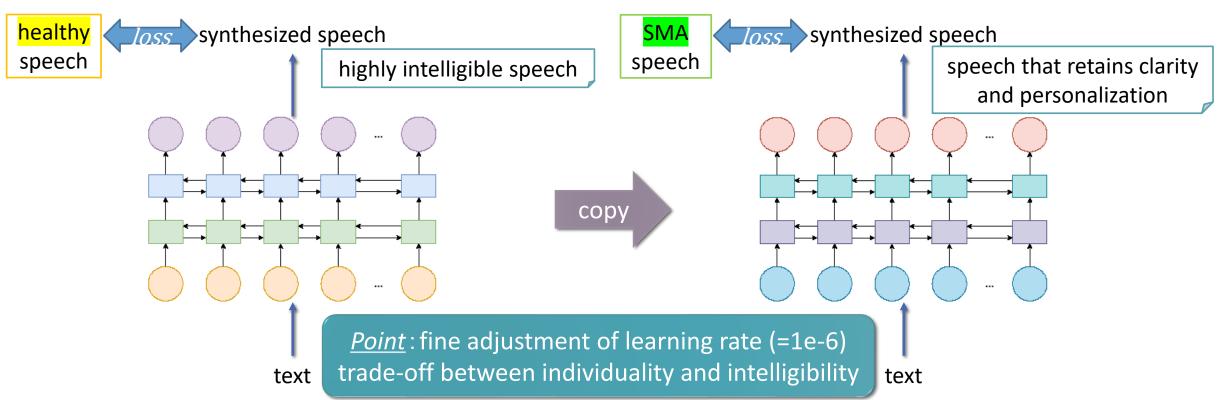
synthesize speech that is both individual and intelligible


Creating TTS for a person with SMA (2/2)

train a TTS model with a small amount of SMA patient speech data

synthesize speech that is both individual and intelligible

speech of a healthy person is intelligible & there is a large amount of normal speech data



PROPOSED METHOD

After creating a TTS model using a large amount of a healthy subject's speech, the model is adapted using a small amount of an SMA patient's own speech

Proposed Method

- Pre-training...make a model for a healthy subject
 - Step 1. Random initial values for the TTS model
 - Step 2. Training with a large amount of healthy data
- Fine-tuning...adapt the model for an SMA patient
 - Step 1. Copying a TTS model for a healthy subject
 - Step 2. Training with a small amount of SMA data

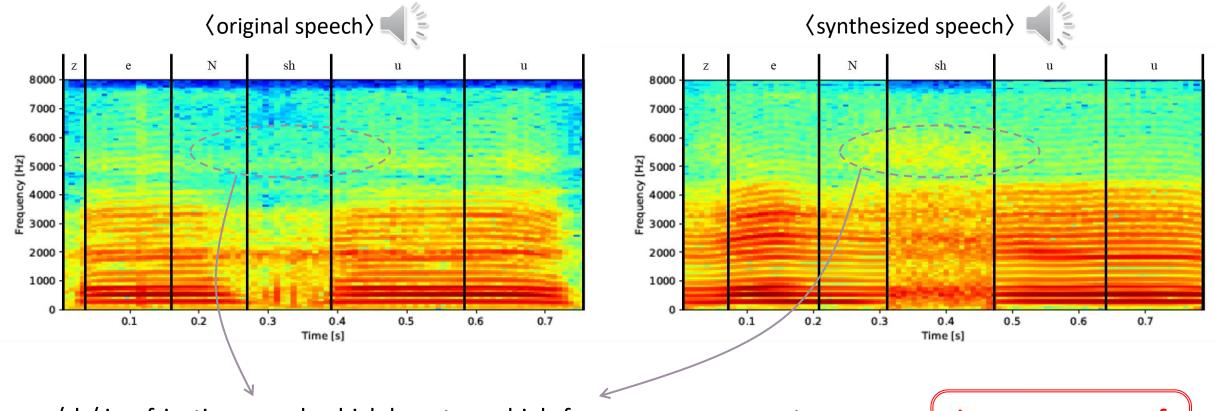
Experimental conditions (1/2)

Speech data

healthy person: 503 phoneme-balanced sentences were uttered by one Japanese female $SMA\ person$: 215 phoneme-balanced words were uttered by one Japanese female (SMA type I)

Each word was uttered 4-5 times repeatedly (total 1,070 utterances)

◆ Model structure we use two models: an acoustic model and a duration model three layers of bidirectional LSTM (long short-term memory) having 1,024 cells in each layer only the acoustic model is adapted

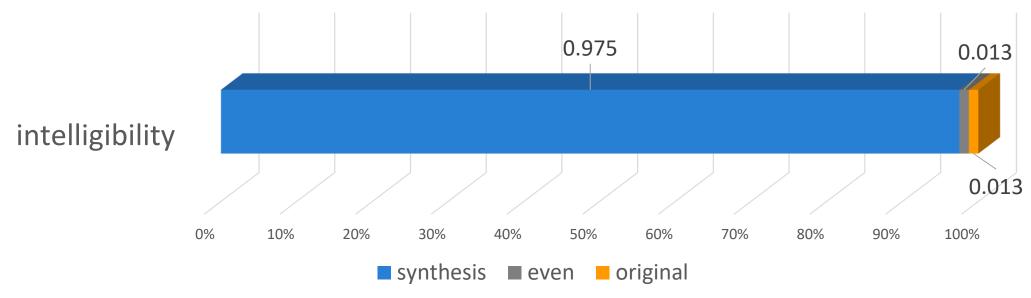

◆ Vocoder WORLD

Experimental conditions (2/2)

- ◆ Acoustic features 60-dimensional melcepstrum a band aperiodicity parameter (BAP) a logarithmic fundamental frequency (F0) a voiced/unvoiced flag total dimension: 187
- Evaluation method
 Comparison of spectrograms
 Subjective evaluation experiment (intelligibility and individuality)

Experimental results (1)

Comparison of spectrograms "zeNshuu(全集)"


/sh/ is a fricative sound, which has strong high-frequency components emphasized by speech synthesis

improvement of intelligibility

Experimental results (2-1)

Subjective evaluation (AB test)

Almost all (97.5%) answered that the synthesized speech was easier to hear than the original one

✓ Consonants were heard more clearly

Experimental results (2-2)

Subjective evaluation (XAB test)

The synthesized speech was predominantly close to the speech of a person with SMA, at around 60%

- Proposed method achieved to synthesize many speeches which are similar to the SMA speech
- Because we applied weak adaptation to ensure intelligibility, this might have a negative effect on the individuality

e.g. "z e n sh u u (全集)" 〈SMA original speech〉 (speech of a healthy subject〉 (synthesized speech〉)

Conclusion and future works

Conclusion

Speech synthesis for SMA based on speaker adaptation of a healthy TTS model can produce synthesized speech with improved intelligibility while maintaining individuality.

Future works

- investigate methods for solving the trade-off problem between intelligibility and individuality
- investigate objective evaluation criteria that can quantitatively evaluate the intelligibility and individuality of synthesized speech (e.g., speech/speaker recognition accuracy)

Thank you for listening!