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250M+ people worldwide who have
non-standard speech can’t rely on
speech technology today.
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.50 our research over the
past several years has been
centered around recording as
much audio data as possible
from participants who have
non-standard speech.




Research and data collection began in 2018
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Each phrase we ask participants to record corresponds
to a key use case

Interacting with Interacting with
technology others
Home Automation Talking to a caregiver
Stop the music. I need to move.
Call Mom mobile. Can you turn the TV on?
Turn the bedroom lights on. I want to go to bed.
Close to front door. I'm hungry.

Conversations

That food will never go bad.

| like reading books more than
watching TV.

He told his mother a long story.

Voice Access
A BC,D,E..
1,2 3 4,5...

Up, down...
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To date, we have over 1 million recordings from over 1,000 people

Utterances accumulated
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Personalized
ASR Models

Personalized models
reduced WER (word error
rate) by over 75%

Users used personalized
models for:
e Home automation
e Face toface
conversation
e Dictation and
emails
e Transactional
interactions (asking
for things)
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Focusing on 15
speakers

Avg. Adapted WER

Severity | # Speakers (rel. improvement)

Mild 2 16.5 (62%)*
Moderate | 7 14.3 (76%)
Severe 6 21.6 (72%)

Table 1: Distribution of speakers, severity of speech impair-

ment, and average WER after adaptation with relative improve-
ment.
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Error Analysis

(no above errors apply)

Type Description # Errors (%)

Deletion One or more spoken words 413 (12%)
do not appear in prediction.

Contraction Words either contracted 17 (0.5%)
or a contraction expanded

Normalization | Non-canonical transcription 404 (12%)
(e.g. "four o’clock” vs 74:00”)

Homophone Word has same pronunciation 34 (1%)
but different meaning.

Spelling Different spelling, beyond 30 (1%)
what’s covered above.
(e.g. “color” vs “colour”)

Proper noun Misrecognized named entity 386 (11%)
or technical term.

Repetition Non-spoken repetitions. 21 (1%)

Word Error A word is misrecognized. 2168 (62%)

Table 2: Description of error types with counts and proportion

of 3473 errors.

Assessment | Description # Errors (%)

0 Meaning is completely 861 (25%)
preserved.

1 Some errors, but meaning | 786 (23%)
is mostly preserved.

2 Major errors, significant 1826 (53%)
changes to the meaning.

Table 3: Error severity assessment response scale, descriptions,
counts and proportion of total 3473 errors.




BERTScore

BERT is a contextual embedding model.

Comparing two sentences’ token
embeddings, BERTScore is the
maximization of cosine similarity.

We report F.., which is the F1 measure
combining precision and recall from
BERTScore.

Contextual Pairwise Cosine Maximum Similarity Importance Weighting
Embedding Similarity (Optional)
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Source: Bertscore: Evaluating text generation with bert

Code for Bertscore is available at https://github.com/Tiiiger/bert score
Image from Bertscore paper https://arxiv.org/abs/1904.09675
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Comparing metrics ;

Assessment | Description
0 Meaning is completely
preserved.

1

Some errors, but meaning
is mostly preserved.

Major errors, significant
changes to the meaning.

Error Type Predicted Transcript Actual Transcript  Word Acc.  Fgerr  Assessment
Deletion Come right back _ Come right back please  0.75 0.86 0
I have a head - I have a headache (.75 0.69 2
Contraction I’m a bit overwhelmed [ am a bit overwhelmed.  0.60 0.89 0
Normalization play Beyoncé play Beyonce (.50 1.00 0
Okay 9:30 five Okay, nine thirty five.  0.50 0.75 |
Proper Noun Here are TV shows by Hugh Griffiths Here are TV shows by Hugh Griffith  0.86 0.96 0
First do you know how the story ends Faust, do you know how the story ends? (.88 0.79 2
Repetition What are you are you trying to say to me What are you trying to say to me?  0.75 0.92 1

Table 4: Examples of errors with associated Word Accuracy, Fperr and Error Assessment metrics.
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BERTScore
distinguishes Error
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. ' |
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S g
Std Dev 0.142 0.274
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assessment assessment

Figure 1: Distribution of Word Accuracy (left) and Fggrr (right) broken out by error assessment.
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BERTScore

distinguishes Error =~ ——

spelling]

Type better

BERTScore is more robust to normalization
and contraction errors that do not change
semantic meaning.
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Figure 2: Distribution of Word Accuracy (left) and Fgerr (right) broken out by error type.
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BERTScore fits SLP
error severity
assessments better

Though both are Word Accuracy and F ..
are significant predictors or error severity
assessment, FBERT is more predictive. This
is evidenced by higher magnitude of
coefficient and lower Akaike Information
Criterion (AIC).

The Akaike information criterion (AIC) is an
estimator of prediction error and thereby relative
quality of statistical models for a given set of
data.

Ordinal Logistic Regression Analysis

Metric Coeff Std Err t value p value AIC
Word accuracy -2.52 0.144 -17.4 p<0.001 6733
Faert -10.87 0.380 -28.6 p<0.001 5854
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Conclusions

e  When creating ASR models for individuals if atypical speech, conveying
semantic meaning is the most important metric.

e Both metrics are significantly correlated with Error Type and Assessment,
but BERTScore is a stronger predictor of Error Assessment.

e BERTScore can be used in conjunction with WER to measure ASR models
for speakers with disordered speech.
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Thank you so much to our many participants and testers!!
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Thank you.

More info

w g.co/Euphonia
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