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Abstract
Recently, speech signal processing technology has been used to
assist people with disabilities, and the demand for such technol-
ogy is increasing. In this study, we focus on spinal muscular at-
rophy (SMA) patients. SMA is a neuromuscular disease. Those
with this disease have speech that is unclear compared to that
of normal subjects which results from the use of a ventilator af-
ter a tracheotomy and from the atrophy of muscles that move
the mouth, etc. Therefore, it is difficult to understand what they
are saying, making communication difficult. In this paper, we
analyze the speech of people with SMA and propose a text-to-
speech (TTS) system to aid in communication. The proposed
system uses an approach that adapts a TTS model pre-trained
using normal speech to speech of a person with SMA. This sys-
tem can synthesize speech having both of intelligibility derived
from normal speech and individuality derived from the speech
of the target subject with SMA.
Index Terms: speech synthesis, speech recognition, model
adaptation, spinal muscular atrophy

1. Introduction
According to a survey conducted by the Cabinet Office [1],
in Japan there are 4,360,000 people with physical disabili-
ties, 1,094,000 with intellectual disabilities, and 4,193,000 with
mental disabilities. If those with multiple disabilities are not
double counted, this means that approximately 7.6% of the pop-
ulation has some form of disability. Among those with physical
disabilities living at home, 341,000 are estimated to have hear-
ing or speech disabilities [2]. These disabilities tend to be a
major barrier to communication, and support to enable them to
be able to communicate smoothly is essential.

This study focuses on dysarthria caused by spinal muscu-
lar atrophy (SMA). SMA is a type of lower motor neuron dis-
ease caused by lesions of motor nerve cells in the spinal cord
[3, 4]. Most people with SMA are unable to move their bod-
ies freely, and their voice is one of the most important means
of communication for them. However, the speech of dysarthria
patients, including those with SMA, differs from that of normal
people in speech style, resulting in slurred speech and difficulty
in their being understood [5, 6]. In recent years, text-to-speech
(TTS) applications using smartphones and tablets have been de-
veloped and used to aid in the communication of patients with
dysarthria. However, the voice produced by current TTS appli-
cations is based on the human voice that was used to train the
model used in the application, resulting in a synthesized voice
that is very different from the user’s own. Users have a need
to “speak in their own voice,” and for this purpose, it is con-
ceivable that the TTS model can be trained using only their own
voice. However, to achieve this, a large amount of data is re-
quired, and the long recording time is very physically demand-

ing for the user. Moreover, this will cause the synthesized voice
to be as unclear as the user’s original unclear voice.

There have been previous works on speech synthesis for
motor neural disease (MND) and amyotrophic lateral sclerosis
(ALS) (e.g. Voice Banking Project [7, 8]). There have also been
several studies on speech recognition for people with dysarthria
[9, 10]. On the other hand, to the best of our knowledge, there
have been no studies addressing speech synthesis or recogni-
tion for SMA patients. Therefore, as the first step of our work,
we measure the speech recognition accuracy of the speech of
an SMA patient in order to quantitatively evaluate its intelligi-
bility. Next, we propose a speech synthesis system to generate
intelligible speech while maintaining individuality of the target
SMA patient. The proposed method is based on a model adapta-
tion approach that adapts a speech synthesis model of a normal
person with intelligible speech to the speech of the target SMA
patient.

2. The Voice of a Person with Spinal
Muscular Atrophy

In this study, before examining the speech synthesis system, we
conducted a simple automatic speech recognition (ASR) exper-
iment to investigate how difficult it is for a person with SMA
to understand speech. The spectrograms were compared with
those of normal subjects, and the features of the speech of per-
sons with SMA were analyzed.

2.1. Automatic speech recognition (ASR) experiment

2.1.1. Experimental conditions

In this experiment, we conducted a speaker-dependent isolated
word-recognition experiment on one person with spinal mus-
cular atrophy (SMA) and one healthy subject. Models were
trained and evaluated using the Hidden Markov Model Toolkit
(HTK) [11]. Speech recordings of one female SMA patient (la-
bel: DYS) uttering 216 phonetically-balanced words in the ATR
digital speech database [12], repeated five times per word, were
used for the speech recordings of a person with SMA. However,
because some words were not recorded, 210 words were actu-
ally uttered five times, five words were uttered only four times,
and one word was not uttered at all. The speech data of the
normal subjects were obtained from 216 phonetically-balanced
words spoken by one woman (label: FTK) in the corpus, and
five variations per word (including the original) were created by
manipulating the speech speed and pitch. The one of five ut-
terances were used as evaluation data, and the remaining four
were used as training data. For example, when recognizing the
first utterance, the second to fifth utterances were used as train-
ing data. This was done for each of the five utterances, and the



Table 1: Phoneme list

I N U a b by
ch cl d e f g
gy h hy i j k
ky m my n ny o
p py r ry s sh
t ts u w y z

Table 2: ASR results

model DYS FTK
word 73.88% 100%
phoneme 15.41% 100%

recognition results were calculated as the average of the recog-
nition rate.

The acoustic features used in the experiment are the 12-
dimensional mel frequency cepstrum coefficients (MFCC) and
their first derivative. The sampling rate of the speech was 16
kHz, the hamming window length was 25 msec, and the frame
shift was 10 msec.

The GMM-HMM word and phoneme models were used for
the automatic speech recognition (ASR) model. The number of
states for the HMM was set to 3 (excluding start/end states) and
the number of mixtures for the GMM was set to 4. The dictio-
nary was designed to include only 216 phonetically-balanced
words. Although there are multiple definitions of the Japanese
phonetic system, we used the 36 phoneme models shown in Ta-
ble 1.1

2.1.2. Automatic speech recognition results

Table 2 shows the experimental results. The recognition rate
of a healthy subject was 100% for both the word and phoneme
models, regardless of which set of utterances was used for eval-
uation. On the other hand, there was a large difference in
the recognition rate between the word model and the phoneme
model for the speech of a person with SMA. The result of the
word model showed that the recognition rate of the SMA sub-
jects was not as high as that of normal subjects, but they were
able to distinguish words fairly well. However, the extremely
low result of the phoneme model indicate that the phoneme
model was not learned well. The reason for this may be that
the phonetic system of SMA patients does not match that of
normal subjects.

2.2. Comparison of spectrograms

Actually, the speech of dysarthria patients is more likely to lack
high-frequency components and to have phoneme spacing than
the speech of those with normal speech. As an example, Fig-
ure 1 shows the spectrogram and phoneme alignment of “ikioi
/i k i o i/” uttered by a normal person and a person with SMA.
Compared to the speech of normal subjects the speech of SMA
patients . . .

• the power of the high-frequency component is weaker
than that of the low-frequency component,

• the duration of each phoneme is not constant (in the fig-
ure, the second phoneme /i/ is prolonged),

1In addition, we also provided ‘pau,’ which represents the part of
speech that is not speech.
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Figure 1: Sample spectrograms of a physically unimpaired per-
son (top) and a person with SMA (bottom)

• changes in the vowel not being clear (in the figure, the
change from the phoneme /o/ to the phoneme /i/ cannot
be judged from the spectrogram alone), etc.

As seen in the spectrograms of normal subjects, consonants
contain many high-frequency components, consonants are par-
ticularly difficult to understand in the speech of people with
SMA, whose high-frequency components are weak.

3. Speech synthesis system using
speaker-adaptation

Figure 2 shows an overview of the system proposed in this
study. The arrows in both directions in the figure represent the
loss function in learning, and in this study, the mean squared er-
ror (MSE) is used for both. The labels here refer to full-context
labels [13] as shown in Figure 3.

For training, as in conventional text-to-speech (TTS) speech
synthesis systems, the first step is to train two models using a
large amount of normal human speech data and corresponding
labels — a duration model that estimates phoneme duration and
an acoustic model that estimates acoustic features. Both models
consist of three layers of bidirectional LSTM (long short-term
memory) [14, 15] having 1,024 cells in each layer. Next, of
the two learned models, only the acoustic model is replicated.
Finally, speaker adaptation is carried out by retraining the repli-
cated acoustic model using a small amount of speech data from
a person with SMA and the corresponding labels.

During synthesis, the duration of each phoneme in the in-
put text is first estimated using a duration model trained on a
healthy subject’s data. Next, a speaker-adapted acoustic model
is used to estimate acoustic features from linguistic features at
the frame level based on the previously estimated phoneme du-
ration. Finally, synthesized speech is created based on the esti-
mated acoustic features.

The acoustic features are estimated using a speaker-adapted
acoustic model, whereas the duration of each phoneme is es-
timated using the duration model learned on healthy subject’s
data. This is done in order to deal with the problem that for
those with SMA, the duration of each phoneme is not con-
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Figure 2: Overview of the proposed TTS system
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Figure 3: An example of labels

stant, which is one of the characteristics of their speech. How-
ever, if this method is used without modification, the individ-
uality of the speaker, such as speech speed, is lost. Therefore,
the proposed method utilizes the average duration of phoneme
durations of a target SMA patient to denormalize the normal-
ized phoneme duration output from the duration model. The
phoneme duration d(syn) used to create frame-level linguistic
features can be expressed as

d(syn) = d(norm) × sun + d̄dys (1)

where d(norm) is the normalized phoneme duration, sun is the
standard deviation of the phoneme duration of the normal sub-
ject, and d̄dys is the mean phoneme duration of the speaker with
SMA.

4. Speech synthesis experiment
4.1. Experimental conditions

In this experiment, the recorded speech of a person with SMA
was the same as the recorded speech used in the automatic
speech recognition (ASR) experiment (Section 2.1.). For the
normal subject’s speech, 503 phoneme-balanced sentences from
the ATR digital speech database were used. The sampling rate
of the speech was 16 kHz, and the frame shift was 5ms. All
phoneme segmentation (mapping phonemes to their start and
end times) was done manually for the SMA subject. The full-
context labels for the normal subject and the SMA subject were
created using the front-end of Open JTalk [16]. We imple-
mented our proposed method by modifying a parametric speech

synthesis toolkit [17]. As the vocoder, which converts the syn-
thesized acoustic features into the speech waveform, we used
WORLD toolkit [18, 19].

The acoustic features used in this experiment consist of
a 60-dimensional melcepstrum, a band aperiodicity parame-
ter (BAP), a logarithmic fundamental frequency (F0), and a
voiced/unvoiced flag. In addition to static features, dynamic
features up to the second order are included except for the
voiced/unvoiced flag. The acoustic features were normalized
(standardized) to have a mean of 0 and variance of 1 for each
dimension during training. The number of dimensions for the
linguistic features was 975 (979 for the frame-level features,
which include additional frame features), and min-max normal-
ization was performed so that the minimum was 0 and the max-
imum was 1 for each dimension.

The synthesized speech obtained in the experiment was
evaluated using a subjective evaluation experiment, in which
intelligibility and individuality were evaluated. The intelligi-
bility was evaluated by comparing the raw speech of a person
with SMA and the synthesized speech by AB evaluation. ABX
evaluation was used for individuality evaluation to determine
whether the synthesized speech was more similar to the raw
speech of a person with SMA or to the speech of a person with
normal speech.

4.2. Experimental results

4.2.1. Spectrogram changes

As an example, Figure 4 compares the spectrogram of the syn-
thesized speech of the word “zenshu” with the original recorded
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Figure 4: Sample spectrograms of recorded speech (top)
and synthesized speech (bottom)
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Figure 5: Subjective evaluation of intelligibility

speech of a person with SMA. Focus on the phoneme /sh/ in the
figure. Since /sh/ is a fricative sound, the high-frequency com-
ponent is large in the speech of normal subjects. However, in
the recorded speech of a person with SMA, the high-frequency
component of the part corresponding to /sh/ is much smaller.
In contrast, in the synthesized speech, the high-frequency com-
ponent, especially at 5,000 to 6,000 Hz, is larger than in the
recorded speech, suggesting an improvement in intelligibility.

4.2.2. Subjective evaluation results

First, the results of the intelligibility evaluation are shown in
Figure 5. The legends “synthesis,” “even,” and “original” in-
dicate the choice of “synthesized speech is more intelligible,”
“not distinguishable,” and “original recorded speech is more in-
telligible,” respectively.

In most of the evaluations, the synthesized speech was su-
perior to the original recorded speech in intelligibility. Some
evaluators said that the intelligibility of the “S” line sound
showed a large difference in intelligibility. As mentioned in the
previous section, the intelligibility of consonants was improved
by reinforcing the high-frequency component, and the intelligi-
bility was improved by suppressing the variation in the duration
of each phoneme.

Figure 6 shows the results of the individuality evaluation.
The legends DYS and FTK in the figure indicate the selection of
“synthesized speech is close to the recorded speech of a person
with SMA” and “synthesized speech is close to the speech of a
normal person,” respectively.

The synthesized speech was predominantly close to the
speech of SMA patients, at around 60%. Although successful
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Figure 6: Subjective evaluation of individuality

adaptation of the model was able to make many speech sounds
more similar to the speech of a person with SMA, it was neces-
sary to reduce adaptation so that intelligibility was not compro-
mised, and the effect of this adaptation may have affected the
speaker’s individuality.

5. Discussion and conclusion
In this study, we analyzed the speech of people with spinal
muscular atrophy (SMA) using automatic speech recognition
(ASR) system, and investigated speech synthesis to improve the
cause of intelligibility. We showed that speech synthesis based
on speaker adaptation of a normal human acoustic model can
produce synthesized speech with improved intelligibility while
maintaining individuality of speech. Speaker adaptation is a key
factor in speech synthesis.

At this stage, in carrying out speaker adaptation, we have
only considered the loss between calculated acoustic features
by speech of a person with SMA and estimated features by the
acoustic model. In order to prevent the loss of intelligibility due
to too much adaptation, it may be necessary to consider the loss
with the features of normal subjects during speaker adaptation.
In our future works, we will explore more suitable model struc-
ture and the training methodology in order to synthesize speech
having more individuality. In addition, we will evaluate our
proposed method on more SMA subjects. We will also investi-
gate objective evaluation criteria that can quantitatively evaluate
the intelligibility and individuality of synthesized speech (e.g.,
speech recognition accuracy and speaker recognition accuracy).
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