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Abstract
Word Error Rate (WER) is the primary metric used to as-
sess automatic speech recognition (ASR) model quality. It
has been shown that ASR models tend to have much higher
WER on speakers with speech impairments than typical En-
glish speakers. It is hard to determine if models can be be use-
ful at such high error rates. This study investigates the use of
BERTScore, an evaluation metric for text generation, to provide
a more informative measure of ASR model quality and useful-
ness. Both BERTScore and WER were compared to predic-
tion errors manually annotated by Speech Language Patholo-
gists for error type and assessment. BERTScore was found to
be more correlated with human assessment of error type and
assessment. BERTScore was specifically more robust to ortho-
graphic changes (contraction and normalization errors) where
meaning was preserved. Furthermore, BERTScore was a better
fit of error assessment than WER, as measured using an ordi-
nal logistic regression and the Akaike’s Information Criterion
(AIC). Overall, our findings suggest that BERTScore can com-
plement WER when assessing ASR model performance from
a practical perspective, especially for accessibility applications
where models are useful even at lower accuracy than for typical
speech.

1. Introduction
Automatic Speech Recognition (ASR) model quality is most of-
ten measured by Word Error Rate (WER), the aggregate score
of word deletions, substitutions and insertions. WER is the de
facto metric for benchmarking models’ improvements and re-
gressions. Most state-of-the-art (SOTA) ASR models trained
and evaluated on typical English speech report single digit
WERs on standard test corpora [1]. However, models trained
only on typical speech perform worse on disordered speech, re-
porting a median WER of 31.5 on short phrases [2]. In these
situations where WER is high, it is difficult to assess how use-
ful a model will be for the end user. In particular, WER doesn’t
capture semantic closeness or the assessment of the error. For
instance, misrecognizing the suffix ‘s’ in a plural and missing
the negation of a word can have the same error rate but missing
the negation can fail to capture the user’s intent (see examples
in Table 4). Thus, looking at word error rate alone may not
convey the utility of the model in some practical settings where
errors are tolerated. An example being video call captioning for
a person with a speech impairment, which can ensure that the
conversation partner will understand the speaker better.

Green et al. show that, for individuals with disordered
speech, personalizing ASR models with the individual’s speech

can lead to on average 75% relative WER improvements over
unadapted models trained for typical speech [2]. The person-
alized models, although having WERs in the range of 15 or 20
(which would be considered high for typical speech), provided
utility to the users in certain domains such as home automation,
spoken transactions (asking for something), and conversations
[3]. Their work demonstrates that transcriptions do not need to
be perfect to communicate a speaker’s intent or meaning. Er-
rors such as normalization (one hundred percent vs. 100%) or
contraction expansion (I’m vs I am) can be considered a combi-
nation of deletions, insertions and substitutions, but to a human
or a SOTA natural language understanding (NLU) system, the
meaning is conveyed the same.

Alternatives to WER have been investigated, aiming to ad-
dress the limitations when applied to conversations [4, 5]. There
are several metrics in natural language understanding applica-
tions that aim to measure similarity of generated text with a
human truth e.g. BLEU [6] and METEOR [7] are popular in
machine translation, ROUGE [8] is used the context of summa-
rization, SPICE [9] is used in image-captioning, and more re-
cently BLEURT [10] and BERTScore [11] which are based on
pre-trained language models have been proposed for text gener-
ation. Even for speech applications, recent work [12, 13] pro-
posed metrics utilizing pre-trained language models. In Kim et
al. [12], the proposed alternate metric is based on semantic dis-
tance between the predicted and ground truth transcripts. Our
work is motivated similarly, though we utilize BERTScore1,
an existing semantic distance based metric popular in language
generation and adapt it to our task.

In this work, we specifically investigate BERTScore and
WER for measuring the utility of personalized ASR models.
We worked with Speech Language Pathologists (SLPs) to per-
form a detailed analysis of the errors, including error type and
assessment assessments, based on the model predictions from
personalized ASR models. We then compared both BERTScore
and WER in terms of how well they aligned with the SLP as-
sessments. Our findings showed that while both BERTScore
and WER are well correlated with SLP judgements, BERTScore
was a better fit to the assessments overall. Further, BERTScore
was a better indicator of utility in the presence of simple con-
traction and normalization errors than WER.

2. Data and Approach
We first describe the model and data used in our analysis and
then describe the metric and comparison approach.

1BERTScore is available open source at
https://github.com/Tiiiger/bert score.



2.1. Personalized ASR Models and utility

The ASR models used in our study are based on work from
Green et. al. [2] which developed personalized models for 432
speakers with impairments who contributed to Project Eupho-
nia [14]. This corpus consists of over 1 million samples (over
1300 hours) of more than 1000 anonymized speakers with dif-
ferent types and severity levels of speech impairments. Follow-
ing the same approach in [2], we fine-tuned models on a subset
of 15 individuals from the Euphonia corpus [14] by tuning most
of the initial encoder layers while keeping the decoder frozen.
This included speakers having varying degrees of speech im-
pairment described in Table 1. Speaker etiologies include Amy-
otrophic Lateral Sclerosis (ALS), Cerebral Palsy, Down Syn-
drome, Multiple Sclerosis, and other long tail etiologies that
have less representation in the overall Euphonia dataset, includ-
ing Brain Injury, Vocal Chord Paralysis and Cleft Palate. This
approach showed huge improvements in WER, from average
WER of 66.3 ± 10.0 before adaptation to a WERs in the range
of 15-20 after personalization. These WERs though, are still
much higher than the original model’s WER of 6-8 on typical
speech [15].

Severity # Speakers Avg. Adapted WER
(rel. improvement)

Mild 2 16.5 (62%)2

Moderate 7 14.3 (76%)
Severe 6 21.6 (72%)

Table 1: Distribution of speakers, severity of speech impair-
ment, and average WER after adaptation with relative improve-
ment.

To validate the utility of the models beyond the WER im-
provements, particularly for overall user experience, we so-
licited feedback from 15 speakers who used personalized ASR
models to dictate their speech through a mobile app for several
months. The feedback suggested that in several scenarios, the
models were indeed useful. Specifically, users were able to (1)
perform home automation through voice controlled assistants,
(2) use it for face to face and video conversations with friends
and family, (3) long-form dictation and email, and (4) even
for short transactional interactions with individuals unfamiliar
with the impaired speaker’s voice. These user success stories
suggested that despite high WERs, users experienced benefits
across several domains and situations.

2.2. Error Analysis

To understand and measure the utility of the models and track
improvements and regressions, we sought more detailed analy-
sis of the errors from SLPs on the per-speaker test set produced
by each speaker’s personalized model. SLPs assessed a total
of 3473 transcription errors and determined (1) error type and
(2) assigned an assessment rating of the error severity. They
categorized the errors into 8 types including deletion, contrac-
tion, normalization, homophone, spelling, proper noun, repe-
tition, and other word errors. These are described in Table 2.
The error severity assessment was rated on a scale of 0, 1 or 2
depending on whether or not an error preserved meaning. This
is described in Table 3. An error severity assessed at levels 0

2Mild speech severity models having a higher average WER than
moderate speech severity is an artifact of the small sample size. Green
et al. (2021) showed that Mild WER was significantly lower than Mod-
erate in the Euphonia dataset.

Type Description # Errors (%)
Deletion One or more spoken words 413 (12%)

do not appear in prediction.
Contraction Words either contracted 17 (0.5%)

or a contraction expanded
Normalization Non-canonical transcription 404 (12%)

(e.g. ”four o’clock” vs ”4:00”)
Homophone Word has same pronunciation 34 (1%)

but different meaning.
Spelling Different spelling, beyond 30 (1%)

what’s covered above.
(e.g. “color” vs “colour”)

Proper noun Misrecognized named entity 386 (11%)
or technical term.

Repetition Non-spoken repetitions. 21 (1%)
Word Error A word is misrecognized. 2168 (62%)

(no above errors apply)
Table 2: Description of error types with counts and proportion
of 3473 errors.

and 1 are considered to be “recoverable,” i.e., a communication
partner would be able to understand what a speaker meant to
say. An error level 2 represents a communication breakdown,
where the perceived meaning is lost or drastically altered from
a speaker’s intent.

Assessment Description # Errors (%)
0 Meaning is completely 861 (25%)

preserved.
1 Some errors, but meaning 786 (23%)

is mostly preserved.
2 Major errors, significant 1826 (53%)

changes to the meaning.
Table 3: Error severity assessment response scale, descriptions,
counts and proportion of total 3473 errors.

Dataset. We consolidated the errors and assessments into
a dataset. Table 1 shows the distribution of the speakers and
the severity of their speech impairment, Table 2 shows distri-
bution over error types and Table 3 includes the assessment at
different severity levels. As shown in Table 3, 53% the errors
were assessed as Level 2 errors, 25% of the transcription errors
were marked as Level 0 (meaning completely preserved) and
another 23% as Level 1 (minor errors): in almost half of the
cases, the meaning was preserved. The majority of errors were
the most general category Word Error. There were, however, a
significant amount of normalization errors, which are typically
meaning preserving (Levels 0 or 1). Examples of different error
types and the associated SLP assessments are shown in Table 4.

2.2.1. Overview of transcript error assessment task

For completeness, we also detail the specific instructions pro-
vided to the SLPs here. SLPs were given the following instruc-
tions when assessing an error. To prevent bias and better simu-
late being a conversational partner, SLPs were asked to look at
ground truth transcripts only after making a mental guess at the
phrase meaning.

1. Read the model prediction without looking at the origi-
nal transcript.

2. Make a mental guess at the intended meaning of the text.



Error Type Predicted Transcript Actual Transcript Word Acc. FBERT Assessment
Deletion Come right back Come right back please 0.75 0.86 0

I have a head I have a headache 0.75 0.69 2
Contraction I’m a bit overwhelmed I am a bit overwhelmed. 0.60 0.89 0
Normalization play Beyoncé play Beyonce 0.50 1.00 0

Okay 9:30 five Okay, nine thirty five. 0.50 0.75 1
Proper Noun Here are TV shows by Hugh Griffiths Here are TV shows by Hugh Griffith 0.86 0.96 0

First do you know how the story ends Faust, do you know how the story ends? 0.88 0.79 2
Repetition What are you are you trying to say to me What are you trying to say to me? 0.75 0.92 1

Table 4: Examples of errors with associated Word Accuracy, FBERT and Error Assessment metrics.

3. Read the ground-truth transcript and compare to the pre-
diction; assign an error assessment according to the scale
in table.

To assess Inter-Annotator Agreement, measured with Co-
hen’s kappa [16], 5% of the errors were annotated by two SLPs.
Raters were in substantial agreement for both error assessment
(κ = 0.64) and error types (κ = 0.69) based on the scale in
[17].

2.3. Word Accuracy and FBERT

BERTScore [11] is a text evaluation metric based on a pre-
trained BERT model’s [18] contextual embedding. It mea-
sures the similarity of two sentences as the sum of the cosine
similarities of the token embeddings of the sentences as fol-
lows. Let the ground truth transcript (x) with pre-normalized
token embeddings (xi), be represented as x = 〈x1, · · · , xk〉,
and a similarly tokenized predicted sentence be represented as
y = 〈y1, · · · , yl〉, and the cosine similarity between two tokens
xi and yj be denoted as xi ·yj . We use the version of BertScore
where the cosine similarity is weighted by the inverse docu-
ment frequency (idf) computed on the test set of ground truth
transcripts. Then, BERTScore maximizes the cosine similarity
of each token in x with each token in y to compute the recall,
precision, and F1 measure as:

R =
1

|x|
∑
xi∈x

max
yj∈y

(xi · yj) P =
1

|y|
∑
yj∈y

max
xi∈x

(xi · yj)

FBERT = 2
P ×R
P +R

(1)

We use the BERT-base model [18] for the token embed-
dings to compute cosine similarity. BERTScore[11] was evalu-
ated on several hundred machine translation and captioning sys-
tems and was shown to be robust to syntax changes and provide
a metric of semantic similarity that aligned well with human
judgements. In this analysis we use the F1 measure, denoted
FBERT (Eqn. 1), combining the sentence level precision and re-
call returned from BERTScore. The ranges of FBERT and WER3

are [0,1] and [0,100] respectively. A transcript with an exact
match would have FBERT = 1 and WER = 0. In order to make
analysis more comparable, we match ranges by reporting Word
Accuracy (Eqn. 2) instead of WER in the subsequent sections.

Word Accuracy = 1− WER

100
(2)

2.4. Ordinal Logistic Regression

We examine how well WER and FBERT as metrics are aligned
with expert-annotated error assessments. Since error assess-

3WER is capped at 100 in this analysis.

ments were graded on a Likert Scale from 0 to 2 and are in-
herently ordinal, we ran a series of ordinal logistic regression
(OLR) models with error assessments as the dependent variable,
and Word Accuracy and/or FBERT as the independent variables.

To further determine model quality with Word Accuracy
and FBERT as parameters, we rank each models’ associated
Akaike Information Criterion (AIC)[19], a lower AIC indicat-
ing a better model for the data.

3. Results
BERTScore distinguishes error severity better. Figure 1
shows the summary statistics of Word Accuracy and FBERT for
the three levels of error assessment. We can clearly see that 1)
FBERT distinguishes different error assessment levels better than
Word Accuracy, especially between 0 and 1; and 2) FBERT has
overall smaller variance (SD = 0.142) than Word Accuracy
(SD = 0.274). A one-way ANOVA test also confirms that
FBERT (F = 684.38, p < 0.001) could differentiate different as-
sessment levels better than Word Accuracy (F = 209.01, p <
0.001).

BERTScore distinguishes error types better. Leveraging
the expert-annotated error types for all data, we then compare
how Word Accuracy and FBERT differentiate between different
error types, with results shown in Figure 2. For instance, FBERT

differentiates contraction errors better than Word Accuracy (i.e.
they should have higher scores because these errors typically
do not impact the semantic meanings of the speech), similarly
for normalization errors. One-way ANOVA tests again confirm
that FBERT (F = 41.75, p < 0.001) outperforms Word Accu-
racy (F = 9.45, p < 0.001) when distinguishing different error
types on impaired speech.

BERTScore fits SLP assessments better. Our results of
ordinal logistic regressions show that both Word Accuracy and
FBERT are significant predictors for error assessment, but FBERT

has a larger absolute value of coefficient (coeff = −2.52, t =
−17.4, p < 0.001) than Word Accuracy (coeff = −10.87, t =
−28.6, p < 0.001), which means FBERT is more predictive of
error assessment: a decrease in FBERT is more likely to result in
a higher error assessment score (i.e. more severe error). This
is also confirmed by AIC scores where AIC = 5854 for OLR
with FBERT as the parameter and AIC = 6733 with Word Ac-
curacy. The OLR model with FBERT as the parameter fits better
with the error assessment data, than with Word Accuracy as the
parameter.

BERTScore is more useful when measuring semantic
similarity. Models based on WER and BERTScore both sig-
nificantly fit the data, but there are situations where BERTScore
is more robust to transcription errors that do not affect the se-
mantic meanings. Table 4 shows transcription error examples
with their associated Word Accuracy and FBERT. For instance,
both “Deletion” examples (see row 1 in Table 4) have a word
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Figure 1: Distribution of Word Accuracy (left) and FBERT (right) broken out by error assessment.

contraction

deletion

homophone

normalization

proper noun

repetition

spelling

word error

0.00 0.25 0.50 0.75 1.00
WordAccuracy

e
rr

o
r_

ty
p
e

contraction

deletion

homophone

normalization

proper noun

repetition

spelling

word error

0.00 0.25 0.50 0.75 1.00
F_BERT

e
rr

o
r_

ty
p
e

Figure 2: Distribution of Word Accuracy (left) and FBERT (right) broken out by error type.

accuracy of 0.75. However, one (Come right back ) has an
assessment score of 0 because the original meaning of the ut-
terance is persevered, while the other example (I have a head )
has an assessment score of 2 because of the significant change to
the intended meaning. Using Word Accuracy in this case fails
to distinguish the quality of the predicted transcripts. FBERT,
instead, performs better in measuring the quality of the predic-
tions (0.86 vs. 0.69). Similarly, normalization errors often re-
sult in low Word Accuracy, especially for short phrases, even
though the meaning is not affected. E.g. play Beyoncé vs. play
Beyonce has an Word Accuracy of 0.50 while an FBERT of 1.00.

BERTScore is however more expensive and less flexi-
ble than WER. WER is useful in many applications regardless
of language or phrase domain. BERTScore on the other hand
is more computationally expensive and relies on a pre-trained
BERT model that can run into issues with multilingual data and
out of vocabulary words.

4. Conclusion
ASR models exhibit higher word error rates when measured on
non-typical speech, relative to rates typically reported in SOTA
research. When making product decisions, it can be difficult to
assess the quality of a model with a large WER. Models that
could provide utility to people with impaired speech may be
gated from release unnecessarily. To our knowledge, this is

the largest user study validating the usefulness of personalized
models despite models having WERs larger than products made
for typical speakers.

In this study we discussed a separate metric for determining
model quality based on loss of semantic meaning in transcrip-
tion errors using BERTScore, a semantic embedding metric. We
found that BERTScore was more robust to several types of tran-
scription errors including normalization and contraction errors.

In future studies, we aim to investigate further metrics, such
as Character Error Rate (CER) and BLEURT, that can give in-
sight into when a model will be useful for speakers with disor-
dered speech, especially when a speaker may have a condition
that causes their voice to become more severely impaired over
time. WER and BERTScore, when used together as parame-
ters, fit the data better than either parameter alone. Future stud-
ies should also look at utilizing both signals together to assess
model usefulness. It would also be good to a domain specific
threshold of WER and FBERT that can help predict success rate,
proportion of speakers that will have a usable ASR model after
personalization, similar to the home automation domain WER
of 15 discussed in Tobin and Tomanek(2022).

Future studies can also investigate applications of
BERTScore for estimating ASR model quality beyond disor-
dered speech. ASR models with higher WER may still be useful
for speakers with accented speech or non-ideal acoustic settings
for example.
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