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Abstract
Most text-to-speech systems suffer from the limitation that its
inputs should be a set of strings of characters with standard pro-
nunciation, and struggle when given input is in the form of sym-
bols, numbers, or abbreviations that often occur in real text. One
of the most common ways to address this problem is to automat-
ically map non-standard words to standard words using statisti-
cal, neural and rule-driven methods. However, despite the sig-
nificant efforts of normalizing such words, there is just too much
variability in existing corpora such that it is extremely challeng-
ing to capture edge cases. In this work, we propose a tool which
aids data collection from (non-programmer) native speakers to
allow numbers and other common non-standard words to be
mapped to standard words that can be pronounced correctly by a
synthesizer, while addressing related problems such as identify-
ing common non-standard words appear in text and how do we
ask questions from native speakers to get sufficient information
to allow a useful normalization of non-standard words.
Index Terms: text normalization, text-to-speech, speech syn-
thesis, low-resource languages, data collection

1. Introduction
Text-to-speech (TTS) has improved to the level that given a cor-
pus of well recorded, well-spoken and a transcript, it is possible
to build a high quality text-to-speech system. However, such
systems are almost always limited to input that are ‘words’, i.e.
strings of characters that have a standard pronunciation, rather
than symbols, numbers, abbreviations, etc. that appear in real
text. If we want to deploy these text-to-speech engines we will
need to address the tokens in text that are not simple words.

There have been attempts to automate the mapping of these
additional non-standard words to standard words, using various
statistical, neural and rule-driven approaches [1][2][3]. These
methods certainly work, but have poor generalizability to new
languages. The development of commercial synthesizers typi-
cally includes significant effort normalizing such non-standard
words. But although there are often a set of well-defined cases,
there is also an extremely long tail of rare cases that are hard to
cover.

In our work we provide robust methods for building syn-
thesizers, typically aimed at low-resource languages, and tar-
geted to be easily deployed as the base text-to-speech engine
on cheap (mostly) Android devices. However, although these
voice-building techniques typically work well from both found
data (e.g. religious books) or using techniques to create and
record your own phonetically balanced corpora, these tech-
niques do not address the issues of non-standard words.

Except in specialized limited domain cases, it is impractical
to design a recording corpus that covers even as well-defined a
domain as number pronunciation. For most languages the pro-
nunciation of numbers (i.e. string of digits) is well defined, and
effectively rule driven, but in our case how can we effectively

encode that information into our synthesizers without having
developers write their own code. Explicit code would require
specialized binaries, and the ability to write safe and efficient
code, which limits accessibility. We would prefer to be able to
collect sufficient data from a native speaker to allow numbers
and other common non-standard words to be expanded to stan-
dard words that can be pronounced correctly by the synthesizer.

The problem of addressing non-standard words in a low-
resource setting brings forward a number of research questions:

• RQ1: Which non-standard words appear in text?

• RQ2: How do we ask questions to get our answers?

• RQ3: How do we make it easy to answer such ques-
tions?

• RQ4: How do we address variability?

• RQ5: How do we extend this to a full front-end?

There might be other solutions to this issue. For exam-
ple you might be able to predict number pronunciation for an
unknown language if you know something about the language
family. For example if a written word in text appears next to
something that could have a number associated to it, and it starts
with “octo-” given knowledge of Latin based languages it is rea-
sonable to consider it to be the word for the digit “8” (well, the
10th month name notwithstanding). Given that it is likely (even
in religious texts) that the low numbers appear as words in text,
you might be able to derive this. Larger numbers are proba-
bly less likely, and floating point numbers even less so (though
perhaps how floating point numbers are spoken and somewhat
cross-lingually standardized). Another method might be to de-
sign a corpus for people to say that contains all the variations
for the numbers, but that might be hard in general, and if you
only have found data, you might not be able to get access to a
speaker (and recording situation).

It is worth mentioning that in many languages as the com-
plexity of the number strings increases there may be a tendency
to move to more international standards for numbers (e.g. how
exponentiation is spoken, if there is a standard at all). There
may even be a tendency to move to the language of education
for numbers (e.g. English/French/Mandarin) as arithmetic may
have been taught to everyone in that language. And even if
that’s not standard, if everyone knows the English for numbers,
then we can probably better pronounce the numbers in English
than in the native language.

2. Motivation
The text normalization task requires converting a written rep-
resentation of a text into a representation of how that text is to
be read aloud. Although the task seems relatively mundane, it
is very important as a major degradation of perceived quality in
TTS systems can be traced to problems involving text normal-
ization.



Figure 1: Text normalization of currency and measure. The col-
ors in the original text correspond to the standard form in the
normalized text.

In the text normalization example shown in Figure 1, the
original sentence contains “$5” and “2lbs”, which are catego-
rized as non-standard words [4]. For a text to speech system to
read the sentence out loud, every occurrence of a non-standard
word needs to be normalized. This is a difficult task as non-
standard words can appear in different forms or semiotic classes
[5], such as measures, currency, date and time, telephone num-
bers, and more.

Furthermore, the problem seems to prove to be even more
challenging in the multilingual setting. This is because every
language is likely to have different counting systems. While
most languages such as English uses the base-10 counting sys-
tem, the French language uses the base-20 system where the
number “80” is pronounced as “quatre-vingts” which means
“four twenties”. This is similar to Danish, where “50” is nor-
malized to “halvtreds” which means “two and a half times
twenty”.

Figure 2: Text normalization of phone number and time. The
colors in the original text correspond to the standard form in
the normalized text.

Each semiotic class needs to be processed differently into
its normalized form. This can be shown by the example in Fig-
ure 2, where a 10-digit phone number is normalized into indi-
vidual numbers while an instance of time is broken down into
the hour and minute components. This is difficult as phone
numbers vary in length, and there are special cases where a
three-digit number such as “911” is also a valid phone num-
ber. This in turn makes the mapping process highly context-
dependent. Additionally, depending on the language and the use
case of the normalized form, the time class can be normalized
further and added with an AM/PM token by deciding whether
or not the value is before or after 12 PM.

Figure 3: Example of text normalization for the number
“125000” across the English, Mandarin, and Hindi languages.

Even languages with the same base system vary in the way
they chunk the numbers. In English, numbers follow the base-
10 counting system and are separated into chunks of three. Both
Hindi and Mandarin follow the base-10 counting system, how-
ever in Hindi, they chunk the numbers into groups of 3 for the

last three digits and groups of 2 for the remaining digits, while
they chunk the numbers after each ten thousand in Mandarin.
This example is highlighted in Figure 3.

There are even more discrepancies in text normalization
when we go into the details on how to normalize multilingual
semiotic classes, such as how the currency is read out, how the
time is divided, positioning of special symbols, length of phone
numbers in different countries, and more. In English, assigning
the AM/PM token to a time instance depends on whether the
time is before or after 12 PM, i.e. either day or night. In the In-
donesian language, however, the time is defined into morning,
afternoon, evening, and night, depending on when the sun rises
and sets. For example, “15:30” will be normalized to “three
thirty in the evening” while “06:45” will be normalized to “six
forty five in the morning”. Additionally, normalizing text be-
longing to the date semiotic class is also quite tricky. Often,
the text “2010” is read out as “twenty ten” while the first ten
years within a century (e.g. “2000” up to “2009”) will be read
out as a normal four-digit number. Although reading out year
values as a normal number will not completely alter the mean-
ing of a text, it can potentially throw off users listening to the
synthesized text as most English speakers are not familiar with
reading “1999” as “one thousand nine hundred ninety nine”.

The examples above illustrate the various discrepancies in
non-standard to standard text mapping in a very small subset of
semiotic classes across very few languages. For example, some
currencies such as the United States Dollar have a plural form
(dollars), however currencies such as the Indonesian Rupiah are
commonly used in its singular form, regardless of the accom-
panying monetary value. This poses a problem where expand-
ing the text normalization system across multiple languages can
increase the number of mapping functions exponentially. From
this, we propose a method to collect data regarding the counting
system, digit mapping, and relevant information with respect to
the different semiotic classes from native speakers of a language
to allow for the development of a generalizable text normaliza-
tion system.

3. Related work
The standard approach of text normalization commonly used
by industries involves complex hand-written grammars to ver-
balize input tokens, such as Google’s Kestrel TTS text nor-
malization system [1]. The system works by classifying non-
standard tokens into their respective semiotic classes (classifi-
cation grammars) and taking their context to appropriately ver-
balize the token (verbalization grammars). The classification
and verbalization grammars are then compiled into weighted
finite-state transducers (WFSTs) which will be used to pass
non-standard text into. Given that this method requires com-
plex hand-written grammars, it is difficult to dynamically scale
to multiple languages.

Recent advances in text normalization have led to the de-
velopment of rapidly generated FST-based verbalizers for ASR
and TTS systems through the efficient sourcing of language-
specific data collected through questionnaires given to native
speakers of a language [6]. This data contains all the necessary
information to bootstrap the number grammar induction system
to parameterize a verbalizer template, which will then be used
by formal language experts to develop FST-based text normal-
ization systems [7]. Our method takes in the idea of text nor-
malization as a data collection problem and improves it further
by providing a user-friendly interface in the form of a website
and a feature which allows users (both the native speaker source



and the formal language expert) to quickly evaluate the provided
information and the text normalization system for any obvious
mistakes.

Within the last few years, deep learning has taken over the
speech and language technology field. One recent work [2] de-
cided to tackle the text normalization task as a supervised se-
quence to sequence deep learning task: given a large corpus
of written text aligned to its normalized spoken form, train a
recurrent neural network (RNN) to learn the correct normal-
ization function. Although the authors did achieve very good
results in terms of overall accuracy, they encounter some errors
which are problematic as the resulting standardized text con-
veys the wrong message, thus making it useless when deployed
in a speech application. They came up with a solution by em-
ploying a filter which is based on finite state transducers (FSTs).
The FST-based filter can mitigate such problematic errors and
achieve an even higher accuracy. The authors conclude that text
normalization is not going to be something that can be solved
merely by having huge amounts of annotated text data and feed-
ing the data into a general RNN model.

Only recently, transformer models have been topping the
charts in various tasks ranging over different fields, such as ma-
chine translation in natural language processing. Zhang et al.
[3] suggested that we can treat the text normalization problem
as a machine translation task, where the source language is raw
text and the target language is normalized text, in the same lan-
guage as the source language. Their best transformer model
achieved an accuracy of 96.63%, however after qualitative eval-
uation they found that their model still suffers from unrecov-
erable errors which completely alters the meaning of the text.
Additionally, transformers are notoriously known to only per-
form well when given a large amount of non-standard and stan-
dard text pairs, therefore this methodology (and any supervised
learning-based methods) will not be transferable in the context
of low-resource languages.

4. Methodology
4.1. Data collection

Our main goal is to obtain sufficient information from a native
speaker in order to map non-standard numerical text to its stan-
dardized form, ideally by asking the minimum number of ques-
tions. We would also want the number or type of questions to
be generalizable across various languages to cover multilingual
mappings.

As mentioned in the previous section, there are a lot of nu-
ances in multilingual text normalization which causes it to be a
difficult task to scale across languages. After a careful evalua-
tion of the different counting systems adopted by several (pri-
marily) high resource languages, we observe that the nuances
diminish as the number grows. Furthermore, the non-standard
numerical texts that are commonly found in most corpora are
usually smaller numbers. For instance, it is very rare to observe
an 8-digit number with eight significant digits. From this ob-
servation, we decided that it is sufficient to collect information
on the digits 1-100, as well as the numbers denoting the tens
position, such as hundred, thousand, up to a billion.

Additionally, we have requested some additional informa-
tion from the user regarding the additional symbols that might
exist in numerical text existing in the different semiotic classes,
for example, the decimal point (.), the negative and positive sign
(-,+), comma (,), currency symbol and its normalized form ($ →
dollar), as well as the percentage sign (%). We also gather in-

formation with regards to the chunking of the number. In the
future, we hope to collect even more detailed information to
cover the mapping of all semiotic classes, such as the different
measurement units adopted by the different languages.

We have presented a clean and intuitive website built using
the Streamlit framework [8] where users with limited technical
proficiency will be able to input text normalization data into a
table. The user will be able to pick from over 600 languages
from a drop down menu. The list of languages corresponds
to the number of unique voices available in the CMU Wilder-
ness dataset [9]. Duplicate voices with the highest Mel Cep-
stral Distortion score for Random Forest Clustergen synthesizer
(MCDR) [10] will be omitted from the list.

Then, the user will be able to download a template in the
form of a comma-separated value (CSV) file containing the in-
formation we need to perform text normalization in their native
language. After filling in the CSV file, they can upload the com-
pleted table back onto the website. Their completed table will
be stored with a unique ID consisting of the language ID cor-
responding to the CMU Wilderness voice and the timestamp it
was uploaded, allowing it to be used as a non-standard to stan-
dard mapping for text synthesizers.

The user will then be able to enter a numeric
string such as whole numbers (“1235523”), phone numbers
(“+4120987654”), currency (“$23”), floating-point numbers
(“21.25”), time (“19:10”), and percentages (“90%”). The string
will then be run through a text normalization algorithm which
will output its normalized form. The normalized text will
be processed by the Flite synthesizer [11] which utilizes the
voice corresponding to the language from the CMU Wilderness
dataset, generating a .wav file. The .wav file will be played out
through an audio player widget on the website.

4.2. Text normalization algorithm

When the user uploads the CSV file containing information on
the non-standard to standard text mapping for a particular lan-
guage, the back-end will parse the information into a hashmap
to be normalized using a Python script. At the moment, the
algorithm is able to normalize text in the form of whole num-
bers, phone numbers, currency, floating-point numbers, time,
and percentages. The algorithm takes into account how the
numbers are chunked and processes each chunk accordingly.
Additionally, the algorithm will also take into account the sur-
rounding symbols to identify the semiotic class by querying for
specific symbols such as decimal points, colons, and more. The
algorithm is agnostic to the position of the symbol, as long as
the symbol is attached to the numerical text (not separated by a
white space).

For whole numbers, we will break down the numbers with
respect to the chunking system adopted by the specified lan-
guage. Each chunk will be processed individually and joined
back together. For example, the number “123456” in English
will be divided into “123” and “456”, where “123” will be nor-
malized to “one hundred twenty three” and “456” will be nor-
malized to “four hundred fifty six”. Then, the word “thousand”
will be inserted when concatenating the two chunks.

For currencies, floating-point numbers and percentages, the
non-standard text will be split depending on their position with
respect to the decimal point. The numbers before the decimal
point will be read as a whole number, while the numbers af-
ter the decimal point will be read out individually. Then, the
normalized version of the currency or percentage symbol will
be placed accordingly. For example, the amount “$2.52” will



be normalized in the English language to “two point five two
dollars”. Future iterations of the algorithm will enable the user
to incorporate stylistic preferences specific to a semiotic class,
such as reading out “$2.52” as “two dollars and fifty two cents”
instead of “two point five two dollars”.

Phone numbers will be normalized into individual numbers,
similar to the numbers behind a decimal point. As mentioned
in the previous sections, it is quite difficult to identify which
text is an instance of a phone number, especially when sym-
bols such as dashes between the numbers or the plus sign are
omitted. For example, “911” is a valid phone number, and so
is “1234567890”. For now, we have decided that any numerical
text containing more than 10 digits will be classified as a phone
number and that each number will be read out individually. This
solution, however, might not generalize to multiple languages as
the length of phone numbers varies across different countries.

Finally, texts belonging to the time semiotic class are usu-
ally indicated by a colon in the middle of a string of digits. Since
there are a lot of discrepancies in the way multiple languages in-
terpret time, we decide to make the normalization time instances
generalizable by omitting the AM/PM token and just reading
out the numbers before and after the colon as whole numbers.
For example, “20:50” will be read out as “twenty fifty” instead
of “eight fifty PM”.

4.3. Evaluation and feedback

As our text normalization system mainly adopts a rule-based
methodology which is quite stringent and might not generalize
well to languages with unique counting systems. To aid this, we
provide a feedback collection system where a user will be able
to input an erroneous normalization after the .wav file is gen-
erated and played on the website. After the user has input the
correct normalization, they will be able to listen to the amended
normalization and they will be able to submit it once they are
satisfied. If the user believes that the error came from a mistake
in the input table, they will be able to upload the amended table
the same way they have done so previously. Given enough users
and feedback from erroneous normalizations, this data will al-
low us to identify common mistakes that arise from the text
normalization of specific languages and make the appropriate
amendments to the algorithm or add new fields to collect more
information on the CSV file.

5. Results
Based on our review of previous work and our proposed
methodology, we will answer the research questions posed in
Section 1.

5.1. RQ1: Which non-standard words appear in text?

We have found that the type of non-standard words which in-
volve numerical characters can be grouped into different semi-
otic classes. The presence of a semiotic class highly depends
on the corpus the text originates from. For example, a science
textbook will have multiple instances of measure words such as
“180kg” or “2000m”, while a news article might contain date
and time instances such as “20:30”. Furthermore, there exists
ambiguities between the existing semiotic classes, such as how
“20:30” can represent an instance of time, but it can also indi-
cate a verse from the Bible. Without taking into account the
context of the text, the system will normalize the non-standard
words into its most generic form. So, instead of spelling out
“eight thirty PM”, the normalized form will be “twenty thirty”.

5.2. RQ2: How do we ask questions to get our answers?

Our proposed method relies heavily on user input and feedback,
where a user will fill the required information in a table for the
initial non-standard to standard text mapping, and then make
amendments to erroneous normalizations, which will be used to
improve the algorithm as well as to evaluate whether we would
need to gather more information by adding fields to the table.
The table will contain information such as the digit normaliza-
tion from 1-100, common symbols such as currency and per-
centage, decimal point, number chunking and more. Given ac-
cess to a native speaker of a low-resource language, this process
is relatively easy and efficient. The evaluation process will in-
volve primarily generating non-standard text from the various
semiotic classes and calculating the number of correct and in-
correct normalizations to obtain an accuracy score.

5.3. RQ3: How do we make it easy to answer such ques-
tions?

We present an accompanying website to our tool which was de-
signed with intuitiveness in mind. Through the website, a na-
tive speaker with limited programming or technical skills will
be able to input the non-standard to standard mapping of vari-
ous words such as digits, currency, tens, mathematical symbols
and more, by filling in a spreadsheet in the form of a comma-
separated value (CSV) file. The back-end of the website will
then automatically parse the spreadsheet, allowing the user to
read and listen to the normalization of the non-standard text and
provide any feedback or corrections.

5.4. RQ4: How do we address variability?

Given that our system hosts over 600 unique languages on a
public server for public use, the data we are collecting is vul-
nerable to malicious or erroneous input. To prevent this from
happening, we will store multiple tables from various languages
and we will take the most common mapping for each item. This
method will also solve the issue of dialectal variation that may
arise from the variety of input collected from the native speak-
ers. Taking the most common mapping for each item can also
be used to resolve any text normalization ambiguities within a
language.

5.5. RQ5: How do we extend this to a full front-end?

There are still plenty of non-standard text that may appear in
a corpus which do not include numerical values. These could
be alphabetical sequences which are unseen but pronounceable,
letter sequences such as acronyms and organization names (e.g.
CIA, WHO) whose letters are to be read individually, or short-
ened form/abbreviations which are commonly used (e.g. dept
→ department). In the future, we would like to extend our sys-
tem to be able to capture these nuances from multiple languages
using the same data collection process.

6. Conclusions
Given the variability of the textual representations of the semi-
otic classes in various languages, text normalization continue to
prove to be an inherently difficult task. In this work, we propose
a method to easily collect sufficient information through an in-
tuitive user interface from native speakers, particularly native
speakers of low-resource languages, to obtain a generalizable
mapping from a non-standard text to its standardized form, al-
lowing it to be pronounced correctly by a voice synthesizer.
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Appendices
A. Web application

Figure 4: Screenshot of web application used to collect text normalization data from native speakers and evaluate the existing system


